
High-Level Data Races

Cyrille Artho1, Klaus Havelund2, and Armin Biere1

1 Computer Systems Institute, ETH Zurich, Switzerland
2 Kestrel Technology, NASA Ames Research Center,

Moffett Field, California USA

Abstract. Data races are a common problem in concurrent and multi-threaded
programming. They are hard to detect without proper tool support. Despite the
successful application of these tools, experience shows that the notion of data
race is not powerful enough to capture certain types of inconsistencies occurring
in practice. In this paper we investigate data races on a higher abstraction layer.
This enables us to detect inconsistent uses of shared variables, even if no classical
race condition occurs. For example, a data structure representing a coordinate
pair may have to be treated atomically. By lifting the meaning of a data race to a
higher level, such problems can now be covered. The paper defines the concepts
view andview consistencyto give a notation for this novel kind of property. It
describes what kinds of errors can be detected with this new definition, and where
its limitations are. It also gives a formal guideline for using data structures in a
multi-threading environment.

1 Introduction

Multi-threaded (concurrent) programming is becoming increasingly popular in enter-
prise applications and information systems [2,13]. The Java programming language [1],
for example, explicitly supports this paradigm [11]. Multi-threaded programming, how-
ever, provides a potential for introducing intermittent concurrency errors that are hard to
find using traditional testing. The main source of problem is that a multi-threaded pro-
gram may execute differently from one run to another due to the apparent randomness
in the way threads are scheduled. Since testing typically cannot explore all schedules,
some bad schedules may never be discovered. One kind of error that often occurs in
multi-threaded programs is adata race. In this paper we shall go beyond the tradi-
tional notion of a data race, and introduce a higher level notion of data races, together
with an algorithm for detecting such. The algorithm has been implemented in the Java
PathExplorer (JPaX) tool [9], which provides a general framework for instrumenting
Java programs, and for monitoring and analyzing execution traces. The principles and
theory presented are, however, universal and apply in full to concurrent programs writ-
ten in languages like C and C++ as well [14].

The traditional definition of a data race is as follows [15]:A data race occurs when
two concurrent threads access a shared variable and when at least one access is a
write, and the threads use no explicit mechanism to prevent the accesses from being
simultaneous. Consider for example two threadsT1 andT2, that both access a shared
object containing a counter variablex, and assume that both threads call anincrease()

method on the object, which increasesx by 1. Theincrease()method is compiled into
a sequence of bytecode instructions (loadx to the operand stack, add 1, write back the
result), which by the Java Virtual Machine (JVM) is executed non-atomically. Suppose
the two threads callincrease()at nearly the same time and that each of the threads
execute theload instruction first, which loads the value ofx to the thread-local operand
stack. Then they will both add 1 to the original value, which results in a combined
increment of 1 instead of 2. We shall refer to this traditional notion of data race as a
low-level data race, since it focuses on a single variable.

The standard way to avoid low-level data races on a variable is generally to pro-
tect the variable with a lock: all accessing threads must acquire this lock before ac-
cessing the variable, and release it again after. In Java, methods can be defined as
synchronized which causes a call to such a method on an object to lock the object.
Return from the method will release the lock. Java also provides an explicit statement
form: synchronized(obj){ stmt} , for taking a lock on the objectobj, and executing
statementstmtprotected under that lock. If the above mentionedincrease()method is
declaredsynchronized , the low-level data race cannot occur.

Several algorithms and tools have been developed for analyzing multi-threaded pro-
grams for low-level data races. The Eraser algorithm [15], which has been implemented
in the Visual Threads tool [7] to analyze C and C++ programs, is an example of a dy-
namic algorithm that examines a program execution trace for locking patterns and vari-
able accesses in order to predict potential data races. The Eraser algorithm maintains a
lock setfor eachvariable: the set of locks protecting the variable. In this paper we shall
turn this around and study thevariable setassociated to alock. This notion makes it
possible to detect what we shall refer to ashigh-level data races. The original inspira-
tion for this problem was due to an example provided by Doug Lea in [12], and which
is presented in modified form in Section 2. It defines a simple class representing a coor-
dinate pair with two componentsx andy. All accesses are protected by synchronization
on this , usingsynchronized methods. Therefore, data race conditions on a low
level are not possible. As will be illustrated, there can, however, in this example be data
races on a higher level, and this can be detected as inconsistencies in the granularity of
variable setsassociated to locks. The algorithm for detecting high-level data races is a
dynamic execution trace analysis algorithm like the Eraser algorithm [15].

Beyond Eraser, several static analysis tools exist that examine a program for low-
level data races. The Jlint tool [2] is such an example. The ESC [5] tool is also based
on static analysis, or more generally on theorem proving. It, however, requires annota-
tion of the program, and does not appear to be as efficient as the Eraser algorithm in
finding low-level data races. Dynamic tools have the advantage of having more precise
information available in the execution trace. More heavyweight dynamic approaches
include model checking, which explores all possible schedules in a program. Recently,
model checkers have been developed that apply directly to programs (instead of just
on models thereof), for example the Java PathFinder system (JPF) developed by NASA
[8,17], and similar systems [6,4,10,3,16]. Such systems, however, suffer from the state
space explosion problem. Furthermore, a data race, low-level as well as high-level, can
be hard to find even with model checking since it typically needs to cause a violation of
some explicitly stated property.

The paper is organized as follows. Section 2 introduces the problem of high-level
data races. Section 3 presents the concepts for detecting high-level data races. Section
4 describes the implementation and experiments carried out. Section 5 outlines future
work and Section 6 concludes the paper.

2 The Problem of High Level Data Races

Lock protection for a shared field ensures that no concurrent modification is possible.
However, this only refers to low-level access of the fields, not their entire use or their
use in conjunction with other fields. The remainder of this paper assumes detection of
low-level data races is covered by the Eraser algorithm [15], which can be applied in
conjunction with our analysis.

class Coord {
 double x, y;
 public Coord(double px, double py) { x = px; y = py; }

 synchronized double getX() { return x; }

 synchronized double getY() { return y; }
 synchronized Coord getXY() { return new Coord(x, y); }
 synchronized void setX(double px) { x = px; }

 synchronized void setY(double py) { y = py; }

 synchronized void setXY(Coord c) { x = c.x; y = c.y; }
}

Fig. 1. TheCoord class encapsulating points with x and y coordinates.

A program may be inconsistent even when it is free of low-level data races. Fig. 1
shows a class implementing a two-dimensional coordinate pair with two fieldsx, y,
which are guarded by a single lock. If onlygetXY , setXY , and the constructor are used
by any thread, the pair is treated atomically. However, it is obvious that the versatility
offered by the other accessor (get /set) methods is dangerous: if a thread only uses
getXY andsetXY and relies on complete atomicity of these operations, threads using
the other accessor methods falsify this assumption.

Imagine a case where one thread reads both coordinates while another one sets them
to zero. If the write operation occurs in two phases,setX andsetY , the other thread
may read anintermediate resultwhich contains the value ofx already set to zero but
still the originaly value. This is clearly an undesired and often unexpected behavior.
We will use the termhigh-level data raceto describe this kind of scenario.

Nevertheless, there exist scenarios where some of the other access methods are al-
lowed and pair-wise consistency is still maintained. The novel concept ofview consis-
tencycaptures this notion of consistency while allowing partial accesses. In previous
work, only the use oflocks for each variablehas been considered. The opposite direc-
tion, the use ofvariables under each lock,is the core of our new idea.

Fig. 2 shows another example with three threads, which is abbreviated for better
readability. View consistency does not need to distinguish between read and write ac-

Threadt1 Threadt2 Threadt3

synchronized (c) {
 access(x);

 access(y);

}

synchronized (c) {
 access(x);

}

synchronized (c) {
 access(x);
}

synchronized (c) {

 access(y);
}

Fig. 2.One thread using a pair of fields and two other threads accessing components individually.

cesses, as will be shown after introducing the new example. Reading and writing are
abstracted asaccess(f) , where f is a shared field. Calls of synchronized meth-
ods offering access protection are represented usingsynchronized (lock) {
access(f); } as an abstraction of the inlined method. Thread creations are not
shown. Any control structures within each thread are hidden as well. Furthermore, it is
assumed that each field accessed by a thread is a reference to a shared object, visible to
all threads.

Initially, we only consider the first two threadst1 and t2. It is not trivial to see
whether an access conflict occurs or not. As long ast2 does not usey as well, it does not
violate the first thread’s assumption that the coordinates are treated atomically. Even
thought1 accesses the entire pair{x,y} atomically andt2 does not, the access tox alone
can be seen as a partial access or partial update. A read access tox may be interpreted as
reading{x,y} and discardingy; a write access may be seen as writing tox while leaving
y unchanged. So both threadst1 andt2 behave in a consistent manner.

Each thread is allowed to use only a part of the coordinates, as long as that use
is consistent. Inconsistencies arise with threadt3, which usesx in one operation andy
in another operation, releasing the lock in between. If for example threadt3 readsits
data in two parts, with another thread liket1 writing to it in between,t3 may obtain
partial values corresponding to twodifferentglobal states. If on the other hand thread
t3 writes its data in two parts, other threads, liket1, may read data corresponding to an
intermediatestate. The difficulty in analyzing such inconsistencies lies in the wish to
still allow partial accesses to sets of fields, like the access tox of threadt2.

3 A Solution Based on View Consistency

This section definesview consistency.It lifts the common notion of a data race on a
single shared variable to a higher level, covering sets of shared variables and their uses.

3.1 Views

A lock guardsa shared field if it is held during an access to that field. A lock may guard
several shared fields. Views express what fields are guarded by a lock. LetI be the set

of object instances generated by a particular run of a Java program. ThenF is the set of
all fields of all instances inI .

A viewv∈ P(F) is a subset ofF . Let l be a lock,t a thread, andB(t, l) the set of
all synchronized blocks using lockl executed by threadt. For b∈ B(t, l), a view
generated byt with respect tol , is defined as the set of fields accessed inb by t. The
set of generated viewsV(t)⊆ P(F) of a threadt is the set of all viewsv generated byt.
In the previous example in Fig. 2, threadt1 using both coordinates atomically generates
view v1 = {x,y} under lockl = c. Threadt2 only accessesx alone underl , having view
v2 = {x}. Threadt3 generates two views:V(t3) = {{x},{y}}.

3.2 Views in different threads

A view generated by a thread is amaximal view, v∈M(t), iff it is maximal with respect
to set inclusion inV(t):

vm∈M(t) iff ∀v∈V(t) [vm⊆ v→ vm = v]

Only two views which have fields in common can be responsible for a conflict. This
observation is the motivation for the following definition. Given a set of viewsV(t)
generated byt and a viewv′ generated by another thread, theoverlapping viewsof t
with v′ are all non-empty intersections of views inV(t) with v′:

overlap(t,v′)≡ {v′∩v | v∈V(t)∧v∩v′ 6= /0}

A set of viewsV(t) is compatiblewith another thread’s maximal viewvm, iff all over-
lapping views oft with vm form a chain:

compatible(t,vm) iff ∀v1,v2 ∈ overlap(t,vm) [v1 ⊆ v2∨v2 ⊆ v1]

View consistencyis defined as mutual compatibility between all threads: A thread is
only allowed to use views that are compatible with the maximal views of all other
threads.

∀t1 6= t2, vm∈M(t1) [compatible(t2,vm)]

In the example, we hadV(t1) = M(t1) = {{x,y}}, V(t2) = M(t2) = {{x}}, V(t3) =
M(t3) = {{x},{y}}. There is a conflict betweent1andt3 as stated, since{x,y} ∈M(t1)
intersects with the elements inV(t3) to {x} and{y}, which do not form a chain.

The problem shown above can be generalized to sets of fields and locks. If there are
several locks taken in nestedsynchronized blocks protecting a field, the lock in the
outermostsynchronized block is relevant for the atomicity of the field accesses.
This is because inner locks belong to the access implementation of that data, but not to
the high-level usage of it.

3.3 Incompleteness of this approach

Essentially, this approach tries to infer what the developer intended when writing the
multi-threaded code. It can discover inconsistencies in the code, but an inconsistency

does not automatically imply a fault in the software.False positives(spurious warnings)
are still possible if a thread uses a coarser locking than actually required by operation se-
mantics. This may make the code shorter or achieve a better performance, since locking
and unlocking can be expensive. Releasing the lock between two independent opera-
tions requires splitting onesynchronized block into two blocks.False negatives
(missed faults) are possible if all views are consistent, but the locking is still insuffi-
cient. Assume a set of fields that must be accessed atomically, but is only accessed one
element at a time by every thread. Then no view of any thread includes all variables as
one set, and the view consistency approach cannot find the problem.

4 Experiments

The experiments were all made with JPaX [9], a run-time verification tool consisting
of two parts: an instrumentation module and an observer module. The instrumentation
module produces an instrumented version of the program, which when executed gen-
erates an event log with the information required for the observer to determine the cor-
rectness of the examined properties. The observer of the events used here only checks
for high-level data races. For these experiments, a new and yet totally un-optimized
version of JPaX was used. It instruments every field access, regardless of whether it can
be statically proven to be thread-safe. Because of this, some data-intensive applications
created log files which grew prohibitively large (> 0.5 GB) and could not be analyzed.

Four applications were analyzed. Those applications include a discrete-event ele-
vator simulator, and two task-parallel applications: SOR (Successive Over-Relaxation
over a 2D grid), and a Travelling Salesman Problem (TSP) application. The latter two
use worker threads [11] to solve the global problem. Many thanks go to Christoph von
Praun who kindly provided these examples, which were referred to in [18]. In addi-
tion, a Java model of a NASA planetary rover controller, named K9, was analyzed. The
original code is written in C++ and contains about 35,000 lines of code, while the Java
model is a heavily abstracted version with 7,000 lines. Nevertheless, it still includes the
original, very complex, synchronization patterns.

Table 1 summarizes the results of the experiments. All experiments were run on a
Pentium III with a clock frequency of 750 MHz using Sun’s Java 1.4 Virtual Machine,
given 1 GB of memory. Only applications which could complete without running out
of memory were considered. It should be noted that the overhead of the built-in Just-In-
Time (JIT) compiler amounts to 0.4 s, so a run time of 0.6 s actually means only about
0.2 s were used for executing the Java application. The Rover application could not be
executed on the same machine where the other tests were run, so no time is given there.

It is obvious that certain applications using large data sets incurred a dispropor-
tionally high overhead in their instrumented version. Most examples passed the view
consistency checks without any warnings reported. For the elevator example, two false
warnings referred to two symmetrical cases. In both cases, three fields were involved in
the conflict. In threadt1, the viewsV(t1) = {{1,3},{3},{2,3}} were inconsistent with
the maximal viewvm = {1,2,3} of t2. While this looks like a simple textbook example,
the interesting aspect is that one method int1 included aconditionalaccess to field1.
If that branch had been executed, the view{2,3} would actually have been{1,2,3},

Application Run time, Run time,Log sizeWarnings
uninstrumented [s]instrumented [s] [MB] issued

Elevator 16.7 17.5 1.9 2
SOR 0.8 343.2 123.5 0
TSP, very small run (4 cities) 0.6 1.8 0.2 0
TSP, larger run (10 cities) 0.6 28.1 2.3 0
NASA’s rover controller K9 - - - 1

Table 1.Analysis results for the given example applications.

and there would have been no inconsistency reported. Since not executing the branch
corresponds to reading data and discarding the result, the warning is a false positive.

One warning was also reported for the NASA K9 rover code. It concerned six fields
which were accessed by two threads in three methods. The responsible developer ex-
plained the large scope of the maximal view with six fields as an optimization, and
hence it was not considered an error.

5 Future work

There are many areas in which this work can be expanded. They can be classified into
technical and theoretical problems.

On the technical side, there are still issues with the run-time analysis tool JPaX. The
code instrumentation and event generation does not always provide a reliable identifica-
tion of objects. It relies on name, type, and hash code of objects. The latter can change
during execution, which causes difficulties in the observer. Nonetheless, the hash code
is the best identification which is easily obtainable in Java.

Furthermore, the instrumentation has to be optimized with respect to statically prov-
able thread-safety. For instance, read-only or thread-local variables do not have to be
monitored. Apart from that, the observer analysis could run on-the-fly without event
logging. This would certainly eliminate most scalability problems. Additionally, the
current version reports the same conflict for different instances of the same object class.

On the theoretical side, it is not yet fully understood how to properly deal with
nested locks. The views of the inner locks cause conflicts with the larger views of the
outer locks. These conflicts are spurious. Finally, the elevator case study has shown that
a slightly different, control-flow independent definition of view consistency is needed.
Perhaps static analysis may be better suited to check such a revised definition.

6 Conclusions

Data races denote a concurrent access to shared variables where an insufficient lock
protection can lead to a corrupted program state. Classical, or low-level, data races
concern accesses to single fields. Our new notion of high-level data races deals with
accesses to sets of fields which are related and should be accessed atomically.

View consistency is a novel concept considering the association of variable sets to
locks. This permits detecting high-level data races that can lead to an inconsistent pro-
gram state, similar to classical low-level data races. Experiments on a small set of ap-
plications have shown that developers seem to follow the guideline of view consistency
to a surprisingly large extent. We think this concept, which is now formally defined,
captures an important underlying idea in multi-threading design.

References

1. K. Arnold and J. Gosling.The Java Programming Language. Addison-Wesley, 1996.
2. C. Artho and A. Biere. Applying Static Analysis to Large-Scale, Multi-threaded Java Pro-

grams. In D. Grant, editor,Proc. 13th ASWEC, pages 68–75. IEEE Computer Society, 2001.
3. T. Ball, A. Podelski, and S. Rajamani. Boolean and Cartesian Abstractions for Model Check-

ing C Programs. InProc. TACAS’01: Tools and Algorithms for the Construction and Analysis
of Systems, LNCS, Italy, 2001.

4. J. Corbett, M. B. Dwyer, J. Hatcliff, C. S. Pasareanu, Robby, S. Laubach, and H. Zheng.
Bandera : Extracting Finite-state Models from Java Source Code. InProc. 22nd International
Conference on Software Engineering, Ireland, 2000. ACM Press.

5. D. L. Detlefs, K. Rustan, M. Leino, G. Nelson, and J. B. Saxe. Extended Static Checking.
Technical Report 159, Compaq Systems Research Center, Palo Alto, California, USA, 1998.

6. P. Godefroid. Model Checking for Programming Languages using VeriSoft. InProc. 24th
ACM Symposium on Principles of Programming Languages, pages 174–186, France, 1997.

7. J. Harrow. Runtime Checking of Multithreaded Applications with Visual Threads. In7th
SPIN Workshop, volume 1885 ofLNCS, pages 331–342. Springer, 2000.

8. K. Havelund and T. Pressburger. Model Checking Java Programs using Java PathFinder.
International Journal on Software Tools for Technology Transfer, 2(4):366–381, 2000.

9. K. Havelund and G. Roşu. Monitoring Java Programs with Java PathExplorer. InProc.
First International Workshop on Runtime Verification (RV’01), volume 55 ofENTCS, pages
97–114, France, 2001. Elsevier Science.

10. G. Holzmann and M. Smith. A Practical Method for Verifying Event-Driven Software. In
Proc. ICSE’99, International Conference on Software Engineering, USA, 1999. IEEE/ACM.

11. D. Lea.Concurrent Programming in Java. Addison-Wesley, 1997.
12. D. Lea. Personal e-mail communication, 2000.
13. Sun Microsystems. Java 2 Platform Enterprise Edition Specification.

http://java.sun.com/j2ee .
14. B. Nichols, D. Buttlar, and J. P. Farrell.Pthreads Programming. O’Reilly, 1998.
15. S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: A Dynamic

Data Race Detector for Multithreaded Programs.ACM Transactions on Computer Systems,
15(4):391–411, 1997.

16. S. D. Stoller. Model-Checking Multi-threaded Distributed Java Programs. InSPIN Model
Checking and Software Verification, volume 1885 ofLNCS, pages 224–244. Springer, 2000.

17. W. Visser, K. Havelund, G. Brat, and S. Park. Model Checking Programs. InProc.
ASE’2000: The 15th IEEE International Conference on Automated Software Engineering.
IEEE CS Press, 2000.

18. C. von Praun and T. Gross. Object-Race Detection. InOOPSLA, pages 70–82. ACM, 2001.

